HC Unit 13: Organic Chemistry

Name: _____

organic chemistry:

Carbon is unique among the elements because: -- it can have up to four bonds per C atom \rightarrow ----**Basic Definitions** hydrocarbons: compounds containing only ____ and ____ alkanes: hydrocarbons having only _____ bonds -alkenes: hydrocarbons having at least one bond alkynes: hydrocarbons having at least one _____ bond aromatic hydrocarbons: benzene and compounds "/a benzene-related structure -- -enes, -ynes, and aromatics are _____

"Finer-Point" Definitions

Straight-chain compounds have...

Branched-chain compounds have...

Substituted compounds have...

Branches and H-replacing atoms/groups are collectively called...

Functional group: a characteristic pattern that makes up a portion of a larger m'cule

-- importance:

-- several examples of fgs:

alcohols ketones carboxylic acids

Many organic compounds are combinations of several categories.

Organic Nomenclature Memorize the prefixes that tell the # of C atoms in a chain.

1 =	2 =	3 =	4 =	5 =
6 =	7 =	8 =	9 =	10 =

Naming Straight-Chain Alkanes

- 1. Find the longest continuous chain of C atoms. Choose the appropriate prefix.
- 2. The name ends with -ane.

EX. Provide the counterpart to the given. propane

Alkanes: modification for substituent hydrocarbon (HC) groups

- 1. Number the "longest chain" carbons. Start with the end nearest a branch.
- 2. Name and give the #ed location of each substituent.
 - -- HC substituent groups use the prefixes, but end in -yl.
- 3. List substituents in alphabetical order.

Alkanes: modification for non-HC substitutions

- 1. The "longest chain" MUST contain the substituent.
 - -- example substituents: -NO₂ -NH₂ -F -Br -I
- 2. Number the chain carbons, starting with the end nearest a substituent.
 - -- A non-HC substituent takes precedence over an HC branch.
- 3. Name and give the #ed location of each substituent.
 - -- If necessary, choose #s so that their sum is as low as possible.
 - EX. Provide each counterpart.

3-bromo-2-chlorohexane

2-methyl-1-nitrobutane

4-ethyl-2-methylhexane

Alkanes: modification for cycloalkanes

- -- Use the cyclo- prefix before the word "alkane."
 - EX. Provide each counterpart.

1-bromo-1-chloro-2-methylcyclopentane

Naming Alkenes and Alkynes

- 1. The C-chain MUST include the multiple bond. Use *–ene* or *–yne*, as appropriate.
- 2. Number so that you get to the multiple bond ASAP.
 - -- The multiple bond takes precedence over branching or substituents.
- 3. Use *di* or *tri* right before –*ene* or –*yne* if you have two or three multiple bonds.
 - EX. Provide each counterpart.

1-butyne

7-fluoro-6-methyl-3-octyne

Benzene, Phenol, and Toluene

These are the "Big Three" aromatic compounds.

benzenephenoltolueneFor phenols and toluenes, the C to which the -OH or $-CH_3$ is attached is carbon #1.

EX. Provide each counterpart. bromobenzene ethylbenzene 2-propylphenol

I CH₃

meta-

For this class, if a benzene ring is connected to an **interior** C atom in a hydrocarbon chain, it is called a phenyl ("FENN uhl") group. It looks like THIS and has the formula...

EX. Provide each counterpart.

2-bromo-2-chloro-3-phenylpentane

3-nitro-2,4-diphenylhexane

Alcohols

Alcohols contain the hydroxyl group.

Primary (1°) alcohols have one OH; secondary (2°) have two; tertiary (3°) have three.

Naming Alcohols

--

- 1. Without being redundant, specify the location of the OH group(s); the suffix is -ol.
- 2. Use *di* or *tri* right before –*ol* if you have a secondary or tertiary alcohol.

EX. Provide each counterpart.

1-propanol

3-ethylphenol

3-ethylcyclohexanol

5-bromo-2-propyl-6-chloro-1-hexanol

	Ketones	Aldehydes	Esters	Carboxylic Acids
Functional groups containing the				
<u>carbonyl</u> group	Names end in – <i>one</i> , ^w /the C in the carbonyl having the lowest possible number.	Names end in <i>–al</i> , ^w /the C in the carbonyl being C #1.	The C in the carbonyl is C #1. Whatever is attached to the –O– is named first, then the name ends in –oate.	Names end in <i>–oic acid</i> , ^w /the C in the carbonyl being C #1.

EX. Provide each counterpart.

3-hexanone

3-propylhexanoic acid

3-phenylbutanal

4,4,4-trifluorobutanoic acid

Other Functional Groups to Recognize

Ethers	Amines	Amides
("EETH erz")	("uh MEENZ")	("uh MIDZ" or "AM idz")

Organic Reactions

combustion of hydrocarbons OR compounds "/only C, H, and O: products are...

EX. Write the equation for the complete combustion of 2-methyl-2-pentene.

Write the equation for the complete combustion of ethylbutanoate.

substitution: an H atom is removed and "something else" is put in its place

- -- In <u>halogenation</u>, a _____ atom replaces an H.
- EX. Write an equation for the reaction between ethane and chlorine.

If more chlorine is provided, the reaction will produce...

AND SO ON.

Substitution occurs with aromatic compounds, too.

addition: a multiple bond is broken and two "things" are inserted

-- requires a catalyst (usually a finely-divided _____) to rupture the multiple bond

Another addition reaction is polymerization.

<u>condensation</u> (or <u>elimination</u>, or <u>dehydration</u>): ______ is a product -- One reactant provides an ____, the other provides an ____.

-- Amides can be formed in condensation rxns between carboxylic acids and amines.

EX. Write the equation for the reaction between butanoic acid and nitrogen trihydride.

Esterification is a condensation reaction between a carboxylic acid and an alcohol.

- EX. Write the equation for the reaction between butanoic acid and 1-butanol.
- EX. Write the equation for the reaction between 3-phenyl-2-propenoic acid and ethanol.